Homotopy decompositions of orbit spaces and the Webb conjecture
Jolanta Słomińska
Fundamenta Mathematicae, Tome 167 (2001), p. 105-137 / Harvested from The Polish Digital Mathematics Library

Let p be a prime number. We prove that if G is a compact Lie group with a non-trivial p-subgroup, then the orbit space (Bp(G))/G of the classifying space of the category associated to the G-poset p(G) of all non-trivial elementary abelian p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy colimit of the functor XE/(NE...NE) defined over the poset (sdp(G))/G, where sd is the barycentric subdivision. We also investigate some other equivariant homotopy and homology decompositions of X and prove that if G is a compact Lie group with a non-trivial p-subgroup, then the map EG×GBp(G)BG induced by the G-map Bp(G) is a mod p homology isomorphism.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:281590
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-2,
     author = {Jolanta S\l omi\'nska},
     title = {Homotopy decompositions of orbit spaces and the Webb conjecture},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {105-137},
     zbl = {0985.55010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-2}
}
Jolanta Słomińska. Homotopy decompositions of orbit spaces and the Webb conjecture. Fundamenta Mathematicae, Tome 167 (2001) pp. 105-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-2/