Assuming the continuum hypothesis there is an inseparable sequence of length ω₁ that contains no Lusin subsequence, while if Martin's Axiom and ¬ CH are assumed then every inseparable sequence (of length ω₁) is a union of countably many Lusin subsequences.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-1, author = {Uri Abraham and Saharon Shelah}, title = {Lusin sequences under CH and under Martin's Axiom}, journal = {Fundamenta Mathematicae}, volume = {167}, year = {2001}, pages = {97-103}, zbl = {0982.03024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-1} }
Uri Abraham; Saharon Shelah. Lusin sequences under CH and under Martin's Axiom. Fundamenta Mathematicae, Tome 167 (2001) pp. 97-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-1/