Lusin sequences under CH and under Martin's Axiom
Uri Abraham ; Saharon Shelah
Fundamenta Mathematicae, Tome 167 (2001), p. 97-103 / Harvested from The Polish Digital Mathematics Library

Assuming the continuum hypothesis there is an inseparable sequence of length ω₁ that contains no Lusin subsequence, while if Martin's Axiom and ¬ CH are assumed then every inseparable sequence (of length ω₁) is a union of countably many Lusin subsequences.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:281882
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-1,
     author = {Uri Abraham and Saharon Shelah},
     title = {Lusin sequences under CH and under Martin's Axiom},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {97-103},
     zbl = {0982.03024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-1}
}
Uri Abraham; Saharon Shelah. Lusin sequences under CH and under Martin's Axiom. Fundamenta Mathematicae, Tome 167 (2001) pp. 97-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-1/