Club-guessing and non-structure of trees
Tapani Hyttinen
Fundamenta Mathematicae, Tome 167 (2001), p. 237-249 / Harvested from The Polish Digital Mathematics Library

We study the possibilities of constructing, in ZFC without any additional assumptions, strongly equivalent non-isomorphic trees of regular power. For example, we show that there are non-isomorphic trees of power ω₂ and of height ω · ω such that for all α < ω₁· ω · ω, E has a winning strategy in the Ehrenfeucht-Fraïssé game of length α. The main tool is the notion of a club-guessing sequence.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:282578
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-3-2,
     author = {Tapani Hyttinen},
     title = {Club-guessing and non-structure of trees},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {237-249},
     zbl = {0974.03042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-3-2}
}
Tapani Hyttinen. Club-guessing and non-structure of trees. Fundamenta Mathematicae, Tome 167 (2001) pp. 237-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-3-2/