Espaces de suites réelles complètement métrisables
Pierre Casevitz
Fundamenta Mathematicae, Tome 167 (2001), p. 199-235 / Harvested from The Polish Digital Mathematics Library

Let X be an hereditary subspace of the Polish space ω of real sequences, i.e. a subspace such that [x = (xₙ)ₙ ∈ X and ∀n, |yₙ| ≤ |xₙ|] ⇒ y = (yₙ)ₙ ∈ X. Does X admit a complete metric compatible with its vector structure? We have two results: ∙ If such an X has a complete metric δ, there exists a unique pair (E,F) of hereditary subspaces with E ⊆ X ⊆ F, (E,δ) complete separable, and F complete maximal in a strong sense. On E and F, the metrics have a simple form, and the spaces E are Borel (Π₃⁰ or Σ₂⁰) in ω. In particular, if X is separable, then X = E. ∙ If X is an hereditary space, analytic as a subset of ω, we can find a subspace of X strongly isomorphic to the space c₀₀ of finite sequences, or we can find a pair (E,F) and a metric with the same properties around X. If X is Σ₃⁰ in ω, we get a complete trichotomy describing the possible topologies of X, which makes precise a result of [C], but for general X’s, there are examples of various situations.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:282043
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-3-1,
     author = {Pierre Casevitz},
     title = {Espaces de suites r\'eelles compl\`etement m\'etrisables},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {199-235},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-3-1}
}
Pierre Casevitz. Espaces de suites réelles complètement métrisables. Fundamenta Mathematicae, Tome 167 (2001) pp. 199-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-3-1/