A non-đť’µ-compactifiable polyhedron whose product with the Hilbert cube is đť’µ-compactifiable
C. R. Guilbault
Fundamenta Mathematicae, Tome 167 (2001), p. 165-197 / Harvested from The Polish Digital Mathematics Library

We construct a locally compact 2-dimensional polyhedron X which does not admit a đť’µ-compactification, but which becomes đť’µ-compactifiable upon crossing with the Hilbert cube. This answers a long-standing question posed by Chapman and Siebenmann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:282508
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-2-6,
     author = {C. R. Guilbault},
     title = {A non-Z-compactifiable polyhedron whose product with the Hilbert cube is Z-compactifiable},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {165-197},
     zbl = {0988.57012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-2-6}
}
C. R. Guilbault. A non-đť’µ-compactifiable polyhedron whose product with the Hilbert cube is đť’µ-compactifiable. Fundamenta Mathematicae, Tome 167 (2001) pp. 165-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-2-6/