Chain conditions in maximal models
Paul Larson ; Stevo Todorčević
Fundamenta Mathematicae, Tome 167 (2001), p. 77-104 / Harvested from The Polish Digital Mathematics Library

We present two max varations which create maximal models relative to certain counterexamples to Martin’s Axiom, in hope of separating certain classical statements which fall between MA and Suslin’s Hypothesis. One of these models is taken from [19], in which we maximize relative to the existence of a certain type of Suslin tree, and then force with that tree. In the resulting model, all Aronszajn trees are special and Knaster’s forcing axiom ₃ fails. Of particular interest is the still open question whether ₂ holds in this model.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:281722
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-1-3,
     author = {Paul Larson and Stevo Todor\v cevi\'c},
     title = {Chain conditions in maximal models},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {77-104},
     zbl = {0969.03059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-1-3}
}
Paul Larson; Stevo Todorčević. Chain conditions in maximal models. Fundamenta Mathematicae, Tome 167 (2001) pp. 77-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm168-1-3/