The equivariant universality and couniversality of the Cantor cube
Michael G. Megrelishvili ; Tzvi Scarr
Fundamenta Mathematicae, Tome 167 (2001), p. 269-275 / Harvested from The Polish Digital Mathematics Library

Let ⟨G,X,α⟩ be a G-space, where G is a non-Archimedean (having a local base at the identity consisting of open subgroups) and second countable topological group, and X is a zero-dimensional compact metrizable space. Let H(0,1),0,1,τ be the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor cube. Then (1) there exists a topological group embedding φ:GH(0,1); (2) there exists an embedding ψ:X0,1, equivariant with respect to φ, such that ψ(X) is an equivariant retract of 0,1 with respect to φ and ψ.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:281728
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-3-4,
     author = {Michael G. Megrelishvili and Tzvi Scarr},
     title = {The equivariant universality and couniversality of the Cantor cube},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {269-275},
     zbl = {0967.54037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-3-4}
}
Michael G. Megrelishvili; Tzvi Scarr. The equivariant universality and couniversality of the Cantor cube. Fundamenta Mathematicae, Tome 167 (2001) pp. 269-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-3-4/