Let ⟨G,X,α⟩ be a G-space, where G is a non-Archimedean (having a local base at the identity consisting of open subgroups) and second countable topological group, and X is a zero-dimensional compact metrizable space. Let be the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor cube. Then (1) there exists a topological group embedding ; (2) there exists an embedding , equivariant with respect to φ, such that ψ(X) is an equivariant retract of with respect to φ and ψ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-3-4, author = {Michael G. Megrelishvili and Tzvi Scarr}, title = {The equivariant universality and couniversality of the Cantor cube}, journal = {Fundamenta Mathematicae}, volume = {167}, year = {2001}, pages = {269-275}, zbl = {0967.54037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-3-4} }
Michael G. Megrelishvili; Tzvi Scarr. The equivariant universality and couniversality of the Cantor cube. Fundamenta Mathematicae, Tome 167 (2001) pp. 269-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-3-4/