Sur le caractere gaussien de la convergence presque partout
Michel Weber
Fundamenta Mathematicae, Tome 167 (2001), p. 23-54 / Harvested from The Polish Digital Mathematics Library

We establish functional type inequalities linking the regularity properties of sequences of operators S = (Sₙ) acting on L²-spaces with those of the canonical Gaussian process on the associated subsets of L² defined by (Sₙ(f)), f ∈ L². These inequalities allow us to easily deduce as corollaries Bourgain's famous entropy criteria in the theory of almost everywhere convergence. They also provide a better understanding of the role of the Gaussian processes in the study of almost everywhere convergence. A partial converse path to Bourgain's entropy criteria is also proposed.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:282301
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-1-3,
     author = {Michel Weber},
     title = {Sur le caractere gaussien de la convergence presque partout},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {23-54},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-1-3}
}
Michel Weber. Sur le caractere gaussien de la convergence presque partout. Fundamenta Mathematicae, Tome 167 (2001) pp. 23-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm167-1-3/