Almost maximal topologies on groups
Yevhen Zelenyuk
Fundamenta Mathematicae, Tome 233 (2016), p. 91-100 / Harvested from The Polish Digital Mathematics Library

Let G be a countably infinite group. We show that for every finite absolute coretract S, there is a regular left invariant topology on G whose ultrafilter semigroup is isomorphic to S. As consequences we prove that (1) there is a right maximal idempotent in βG∖G which is not strongly right maximal, and (2) for each combination of the properties of being extremally disconnected, irresolvable, and nodec, except for the combination (-,-,+), there is a corresponding regular almost maximal left invariant topology on G.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286177
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm150-12-2015,
     author = {Yevhen Zelenyuk},
     title = {Almost maximal topologies on groups},
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {91-100},
     zbl = {06602783},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm150-12-2015}
}
Yevhen Zelenyuk. Almost maximal topologies on groups. Fundamenta Mathematicae, Tome 233 (2016) pp. 91-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm150-12-2015/