Incomparable families and maximal trees
G. Campero-Arena ; J. Cancino ; M. Hrušák ; F. E. Miranda-Perea
Fundamenta Mathematicae, Tome 233 (2016), p. 73-89 / Harvested from The Polish Digital Mathematics Library

We answer several questions of D. Monk by showing that every maximal family of pairwise incomparable elements of 𝒫(ω)/fin has size continuum, while it is consistent with the negation of the Continuum Hypothesis that there are maximal subtrees of both 𝒫(ω) and 𝒫(ω)/fin of size ω₁.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286456
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm125-1-2016,
     author = {G. Campero-Arena and J. Cancino and M. Hru\v s\'ak and F. E. Miranda-Perea},
     title = {Incomparable families and maximal trees},
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {73-89},
     zbl = {06602782},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm125-1-2016}
}
G. Campero-Arena; J. Cancino; M. Hrušák; F. E. Miranda-Perea. Incomparable families and maximal trees. Fundamenta Mathematicae, Tome 233 (2016) pp. 73-89. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm125-1-2016/