On automorphisms of the Banach space /c
Piotr Koszmider ; Cristóbal Rodríguez-Porras
Fundamenta Mathematicae, Tome 233 (2016), p. 49-99 / Harvested from The Polish Digital Mathematics Library

We investigate Banach space automorphisms T:/c/c focusing on the possibility of representing their fragments of the form TB,A:(A)/c(A)(B)/c(B) for A,B ⊆ ℕ infinite by means of linear operators from (A) into (B), infinite A×B-matrices, continuous maps from B* = βB∖B into A*, or bijections from B to A. This leads to the analysis of general bounded linear operators on /c. We present many examples, introduce and investigate several classes of operators, for some of them we obtain satisfactory representations and for others give examples showing that this is impossible. In particular, we show that there are automorphisms of /c which cannot be lifted to operators on , and assuming OCA+MA we show that every automorphism T of /c with no fountains or with no funnels is locally induced by a bijection, i.e., TB,A is induced by a bijection from some infinite B ⊆ ℕ to some infinite A ⊆ ℕ. This additional set-theoretic assumption is necessary as we show that the Continuum Hypothesis implies the existence of counterexamples of diverse flavours. However, many basic problems, some of which are listed in the last section, remain open.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286425
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm117-1-2016,
     author = {Piotr Koszmider and Crist\'obal Rodr\'\i guez-Porras},
     title = {On automorphisms of the Banach space $l\_{[?]}/c0$
            },
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {49-99},
     zbl = {06622326},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm117-1-2016}
}
Piotr Koszmider; Cristóbal Rodríguez-Porras. On automorphisms of the Banach space $ℓ_{∞}/c₀$
            . Fundamenta Mathematicae, Tome 233 (2016) pp. 49-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm117-1-2016/