Let p be a prime number ≥ 11 and c be a square-free integer ≥ 3. In this paper, we study the diophantine equation in the case where p belongs to 11,13,17. More precisely, we prove that for those primes, there is no integer solution (x,y,z) to this equation satisfying gcd(x,y,z) = 1 and xyz ≠ 0 if the integer c has the following property: if ℓ is a prime number dividing c then ℓ ≢ 1 mod p. To obtain this result, we consider the hyperelliptic curves and , where is the pth cyclotomic polynomial, and we determine the sets and . Using the elliptic Chabauty method, we prove that and for p ∈ 11,13,17.
@book{bwmeta1.element.bwnjournal-article-doi-10_4064-dm444-0-1, author = {Wilfrid Ivorra}, title = {Sur les courbes hyperelliptiques cyclotomiques et les \'equations $x^{p} - y^{p} = cz$^2$$ }, series = {GDML\_Books}, year = {2007}, zbl = {1116.11018}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-dm444-0-1} }
Wilfrid Ivorra. Sur les courbes hyperelliptiques cyclotomiques et les équations $x^{p} - y^{p} = cz²$ . GDML_Books (2007), http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-dm444-0-1/