Sur les courbes hyperelliptiques cyclotomiques et les équations xp-yp=cz²
Wilfrid Ivorra
GDML_Books, (2007), p.

Let p be a prime number ≥ 11 and c be a square-free integer ≥ 3. In this paper, we study the diophantine equation xp-yp=cz² in the case where p belongs to 11,13,17. More precisely, we prove that for those primes, there is no integer solution (x,y,z) to this equation satisfying gcd(x,y,z) = 1 and xyz ≠ 0 if the integer c has the following property: if ℓ is a prime number dividing c then ℓ ≢ 1 mod p. To obtain this result, we consider the hyperelliptic curves Cp:y²=Φp(x) and Dp:py²=Φp(x), where Φp is the pth cyclotomic polynomial, and we determine the sets Cp() and Dp(). Using the elliptic Chabauty method, we prove that Cp()=(-1,-1),(-1,1),(0,-1),(0,1) and Dp()=(1,-1),(1,1) for p ∈ 11,13,17.

EUDML-ID : urn:eudml:doc:286030
@book{bwmeta1.element.bwnjournal-article-doi-10_4064-dm444-0-1,
     author = {Wilfrid Ivorra},
     title = {Sur les courbes hyperelliptiques cyclotomiques et les \'equations $x^{p} - y^{p} = cz$^2$$
            },
     series = {GDML\_Books},
     year = {2007},
     zbl = {1116.11018},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-dm444-0-1}
}
Wilfrid Ivorra. Sur les courbes hyperelliptiques cyclotomiques et les équations $x^{p} - y^{p} = cz²$
            . GDML_Books (2007),  http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-dm444-0-1/