Taking an odd increasing Lipschitz-continuous function with polynomial growth β, an odd Lipschitz-continuous and bounded function ϕ satisfying sgn(x)ϕ(x) ≥ 0 and a parameter a ∈ [1/2,1], we consider the (nonlinear) stochastic differential system ⎧, (E)⎨ ⎩, and , where , and are independent Brownian motions. We show that (E) admits a stationary probability measure, and, under some additional conditions, that converges in distribution to this invariant measure. Moreover we investigate the link between (E) and the associated system of particles.
@book{bwmeta1.element.bwnjournal-article-doi-10_4064-dm414-0-1, author = {Samuel Herrmann}, title = {Syst\`eme de processus auto-stabilisants}, series = {GDML\_Books}, year = {2003}, zbl = {1027.60058}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-dm414-0-1} }
Samuel Herrmann. Système de processus auto-stabilisants. GDML_Books (2003), http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-dm414-0-1/