Système de processus auto-stabilisants
Samuel Herrmann
GDML_Books, (2003), p.

Taking an odd increasing Lipschitz-continuous function with polynomial growth β, an odd Lipschitz-continuous and bounded function ϕ satisfying sgn(x)ϕ(x) ≥ 0 and a parameter a ∈ [1/2,1], we consider the (nonlinear) stochastic differential system ⎧Xt=X+Bt+a0tϕ*vs(Xs)ds-(1-a)0tβ*us(Xs)ds, (E)⎨ ⎩Yt=Y+B̃t+(1-a)0tϕ*us(Ys)ds-a0tβ*vs(Ys)ds, (Xtdx)=ut(dx) and (Ytdx)=vt(dx), where β*ut(x)=β(x-y)ut(dy), (Bt)t0 and (B̃t)t0 are independent Brownian motions. We show that (E) admits a stationary probability measure, and, under some additional conditions, that (Xt,Yt) converges in distribution to this invariant measure. Moreover we investigate the link between (E) and the associated system of particles.

EUDML-ID : urn:eudml:doc:285971
@book{bwmeta1.element.bwnjournal-article-doi-10_4064-dm414-0-1,
     author = {Samuel Herrmann},
     title = {Syst\`eme de processus auto-stabilisants},
     series = {GDML\_Books},
     year = {2003},
     zbl = {1027.60058},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-dm414-0-1}
}
Samuel Herrmann. Système de processus auto-stabilisants. GDML_Books (2003),  http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-dm414-0-1/