Sur une application de la formule de Selberg-Delange
F. Ben Saïd ; J.-L. Nicolas
Colloquium Mathematicae, Tome 96 (2003), p. 223-247 / Harvested from The Polish Digital Mathematics Library

E. Landau has given an asymptotic estimate for the number of integers up to x whose prime factors all belong to some arithmetic progressions. In this paper, by using the Selberg-Delange formula, we evaluate the number of elements of somewhat more complicated sets. For instance, if ω(m) (resp. Ω(m)) denotes the number of prime factors of m without multiplicity (resp. with multiplicity), we give an asymptotic estimate as x → ∞ of the number of integers m satisfying 2ω(m)mx, all prime factors of m are congruent to 3, 5 or 6 modulo 7, Ω(m) ≡ i (mod 2)(wherei=0or1),andml(modb).The above quantity has appeared in the paper [3] to estimate the number of elements up to x of the set of positive integers containing 1, 2 and 3 and such that the number p(,n) of partitions of n with parts in is even, for all n ≥ 4.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284796
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-8,
     author = {F. Ben Sa\"\i d and J.-L. Nicolas},
     title = {Sur une application de la formule de Selberg-Delange},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {223-247},
     zbl = {1051.11049},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-8}
}
F. Ben Saïd; J.-L. Nicolas. Sur une application de la formule de Selberg-Delange. Colloquium Mathematicae, Tome 96 (2003) pp. 223-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-8/