On indecomposable projective representations of finite groups over fields of characteristic p > 0
Leonid F. Barannyk ; Kamila Sobolewska
Colloquium Mathematicae, Tome 96 (2003), p. 171-187 / Harvested from The Polish Digital Mathematics Library

Let G be a finite group, F a field of characteristic p with p||G|, and FλG the twisted group algebra of the group G and the field F with a 2-cocycle λ ∈ Z²(G,F*). We give necessary and sufficient conditions for FλG to be of finite representation type. We also introduce the concept of projective F-representation type for the group G (finite, infinite, mixed) and we exhibit finite groups of each type.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284496
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-4,
     author = {Leonid F. Barannyk and Kamila Sobolewska},
     title = {On indecomposable projective representations of finite groups over fields of characteristic p > 0},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {171-187},
     zbl = {1060.20012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-4}
}
Leonid F. Barannyk; Kamila Sobolewska. On indecomposable projective representations of finite groups over fields of characteristic p > 0. Colloquium Mathematicae, Tome 96 (2003) pp. 171-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-4/