Towards Bauer's theorem for linear recurrence sequences
Mariusz Skałba
Colloquium Mathematicae, Tome 96 (2003), p. 163-169 / Harvested from The Polish Digital Mathematics Library

Consider a recurrence sequence (xk)k of integers satisfying xk+n=an-1xk+n-1+...+axk+1+axk, where a,a,...,an-1 are fixed and a₀ ∈ -1,1. Assume that xk>0 for all sufficiently large k. If there exists k₀∈ ℤ such that xk<0 then for each negative integer -D there exist infinitely many rational primes q such that q|xk for some k ∈ ℕ and (-D/q) = -1.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284925
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-3,
     author = {Mariusz Ska\l ba},
     title = {Towards Bauer's theorem for linear recurrence sequences},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {163-169},
     zbl = {1059.11008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-3}
}
Mariusz Skałba. Towards Bauer's theorem for linear recurrence sequences. Colloquium Mathematicae, Tome 96 (2003) pp. 163-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-3/