Consider a recurrence sequence of integers satisfying , where are fixed and a₀ ∈ -1,1. Assume that for all sufficiently large k. If there exists k₀∈ ℤ such that then for each negative integer -D there exist infinitely many rational primes q such that for some k ∈ ℕ and (-D/q) = -1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-3, author = {Mariusz Ska\l ba}, title = {Towards Bauer's theorem for linear recurrence sequences}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {163-169}, zbl = {1059.11008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-3} }
Mariusz Skałba. Towards Bauer's theorem for linear recurrence sequences. Colloquium Mathematicae, Tome 96 (2003) pp. 163-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-3/