On split-by-nilpotent extensions
Ibrahim Assem ; Dan Zacharia
Colloquium Mathematicae, Tome 96 (2003), p. 259-275 / Harvested from The Polish Digital Mathematics Library

Let A and R be two artin algebras such that R is a split extension of A by a nilpotent ideal. We prove that if R is quasi-tilted, or tame and tilted, then so is A. Moreover, generalizations of these properties, such as laura and shod, are also inherited. We also study the relationship between the tilting R-modules and the tilting A-modules.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285195
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-10,
     author = {Ibrahim Assem and Dan Zacharia},
     title = {On split-by-nilpotent extensions},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {259-275},
     zbl = {1065.16007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-10}
}
Ibrahim Assem; Dan Zacharia. On split-by-nilpotent extensions. Colloquium Mathematicae, Tome 96 (2003) pp. 259-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-2-10/