On stable currents in positively pinched curved hypersurfaces
Jintang Li
Colloquium Mathematicae, Tome 96 (2003), p. 79-86 / Harvested from The Polish Digital Mathematics Library

Let Mⁿ (n ≥ 3) be an n-dimensional complete hypersurface in a real space form N(c) (c ≥ 0). We prove that if the sectional curvature KM of M satisfies the following pinching condition: c+δ<KMc+1, where δ = 1/5 for n ≥ 4 and δ = 1/4 for n = 3, then there are no stable currents (or stable varifolds) in M. This is a positive answer to the well-known conjecture of Lawson and Simons.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285073
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-6,
     author = {Jintang Li},
     title = {On stable currents in positively pinched curved hypersurfaces},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {79-86},
     zbl = {1053.53039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-6}
}
Jintang Li. On stable currents in positively pinched curved hypersurfaces. Colloquium Mathematicae, Tome 96 (2003) pp. 79-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-6/