Let A = -Δ + V be a Schrödinger operator on , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of if the maximal function belongs to , where is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space admits a special atomic decomposition.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-2, author = {Jacek Dziuba\'nski and Jacek Zienkiewicz}, title = {$H^{p}$ spaces associated with Schr\"odinger operators with potentials from reverse H\"older classes}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {5-38}, zbl = {1083.42015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-2} }
Jacek Dziubański; Jacek Zienkiewicz. $H^{p}$ spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloquium Mathematicae, Tome 96 (2003) pp. 5-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-2/