Hp spaces associated with Schrödinger operators with potentials from reverse Hölder classes
Jacek Dziubański ; Jacek Zienkiewicz
Colloquium Mathematicae, Tome 96 (2003), p. 5-38 / Harvested from The Polish Digital Mathematics Library

Let A = -Δ + V be a Schrödinger operator on d, d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of HAp if the maximal function supt>0|Ttf(x)| belongs to Lp(d), where Ttt>0 is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space HAp admits a special atomic decomposition.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284618
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-2,
     author = {Jacek Dziuba\'nski and Jacek Zienkiewicz},
     title = {$H^{p}$ spaces associated with Schr\"odinger operators with potentials from reverse H\"older classes},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {5-38},
     zbl = {1083.42015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-2}
}
Jacek Dziubański; Jacek Zienkiewicz. $H^{p}$ spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloquium Mathematicae, Tome 96 (2003) pp. 5-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm98-1-2/