Let H be a connected wild hereditary path algebra. We prove that if Z is a quasi-simple regular brick, and [r]Z indecomposable regular of quasi-length r and with quasi-top Z, then .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-2-7, author = {Otto Kerner}, title = {Endomorphism rings of regular modules over wild hereditary algebras}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {207-220}, zbl = {1066.16013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-2-7} }
Otto Kerner. Endomorphism rings of regular modules over wild hereditary algebras. Colloquium Mathematicae, Tome 96 (2003) pp. 207-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-2-7/