For 1 ≤ p,q ≤ ∞, we prove that the convolution operator generated by the Cantor-Lebesgue measure on the circle is a contraction whenever it is bounded from to . We also give a condition on p which is necessary if this operator maps into L²().
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-3,
author = {Daniel M. Oberlin},
title = {A convolution property of the Cantor-Lebesgue measure, II},
journal = {Colloquium Mathematicae},
volume = {96},
year = {2003},
pages = {23-28},
zbl = {1095.42007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-3}
}
Daniel M. Oberlin. A convolution property of the Cantor-Lebesgue measure, II. Colloquium Mathematicae, Tome 96 (2003) pp. 23-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-3/