For 1 ≤ p,q ≤ ∞, we prove that the convolution operator generated by the Cantor-Lebesgue measure on the circle is a contraction whenever it is bounded from to . We also give a condition on p which is necessary if this operator maps into L²().
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-3, author = {Daniel M. Oberlin}, title = {A convolution property of the Cantor-Lebesgue measure, II}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {23-28}, zbl = {1095.42007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-3} }
Daniel M. Oberlin. A convolution property of the Cantor-Lebesgue measure, II. Colloquium Mathematicae, Tome 96 (2003) pp. 23-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-3/