Vector-valued ergodic theorems for multiparameter Additive processes II
Ryotaro Sato
Colloquium Mathematicae, Tome 96 (2003), p. 117-129 / Harvested from The Polish Digital Mathematics Library

Previously we obtained stochastic and pointwise ergodic theorems for a continuous d-parameter additive process F in L₁((Ω,Σ,μ);X), where X is a reflexive Banach space, under the condition that F is bounded. In this paper we improve the previous results by considering the weaker condition that the function W(·)=esssup||F(I)(·)||:I[0,1)d is integrable on Ω.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284516
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-11,
     author = {Ryotaro Sato},
     title = {Vector-valued ergodic theorems for multiparameter Additive processes II},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {117-129},
     zbl = {1045.47012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-11}
}
Ryotaro Sato. Vector-valued ergodic theorems for multiparameter Additive processes II. Colloquium Mathematicae, Tome 96 (2003) pp. 117-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-11/