Given a probability space (Ω,, P) and a closed subset X of a Banach lattice, we consider functions f: X × Ω → X and their iterates defined by f¹(x,ω) = f(x,ω₁), , and obtain theorems on the convergence (a.s. and in L¹) of the sequence (fⁿ(x,·)).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-1, author = {Rafa\l\ Kapica}, title = {Convergence of sequences of iterates of random-valued vector functions}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {1-6}, zbl = {1056.39034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-1} }
Rafał Kapica. Convergence of sequences of iterates of random-valued vector functions. Colloquium Mathematicae, Tome 96 (2003) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-1/