Given a probability space (Ω,, P) and a closed subset X of a Banach lattice, we consider functions f: X × Ω → X and their iterates defined by f¹(x,ω) = f(x,ω₁), , and obtain theorems on the convergence (a.s. and in L¹) of the sequence (fⁿ(x,·)).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-1,
author = {Rafa\l\ Kapica},
title = {Convergence of sequences of iterates of random-valued vector functions},
journal = {Colloquium Mathematicae},
volume = {96},
year = {2003},
pages = {1-6},
zbl = {1056.39034},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-1}
}
Rafał Kapica. Convergence of sequences of iterates of random-valued vector functions. Colloquium Mathematicae, Tome 96 (2003) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm97-1-1/