Global pinching theorems for minimal submanifolds in spheres
Kairen Cai
Colloquium Mathematicae, Tome 96 (2003), p. 225-234 / Harvested from The Polish Digital Mathematics Library

Let M be a compact submanifold with parallel mean curvature vector embedded in the unit sphere Sn+p(1). By using the Sobolev inequalities of P. Li to get Lp estimates for the norms of certain tensors related to the second fundamental form of M, we prove some rigidity theorems. Denote by H and ||σ||p the mean curvature and the Lp norm of the square length of the second fundamental form of M. We show that there is a constant C such that if ||σ||n/2<C, then M is a minimal submanifold in the sphere Sn+p-1(1+H²) with sectional curvature 1+H².

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284521
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-7,
     author = {Kairen Cai},
     title = {Global pinching theorems for minimal submanifolds in spheres},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {225-234},
     zbl = {1046.53035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-7}
}
Kairen Cai. Global pinching theorems for minimal submanifolds in spheres. Colloquium Mathematicae, Tome 96 (2003) pp. 225-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-7/