Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s,χ) for s > 0 and real characters χ
Stéphane R. Louboutin
Colloquium Mathematicae, Tome 96 (2003), p. 207-212 / Harvested from The Polish Digital Mathematics Library

We prove that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ 1- log2, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285001
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5,
     author = {St\'ephane R. Louboutin},
     title = {Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s,$\chi$) for s > 0 and real characters $\chi$},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {207-212},
     zbl = {1044.11081},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5}
}
Stéphane R. Louboutin. Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s,χ) for s > 0 and real characters χ. Colloquium Mathematicae, Tome 96 (2003) pp. 207-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5/