We prove that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ 1- log2, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5,
author = {St\'ephane R. Louboutin},
title = {Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s,$\chi$) for s > 0 and real characters $\chi$},
journal = {Colloquium Mathematicae},
volume = {96},
year = {2003},
pages = {207-212},
zbl = {1044.11081},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5}
}
Stéphane R. Louboutin. Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s,χ) for s > 0 and real characters χ. Colloquium Mathematicae, Tome 96 (2003) pp. 207-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5/