We prove that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ 1- log2, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5, author = {St\'ephane R. Louboutin}, title = {Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s,$\chi$) for s > 0 and real characters $\chi$}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {207-212}, zbl = {1044.11081}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5} }
Stéphane R. Louboutin. Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s,χ) for s > 0 and real characters χ. Colloquium Mathematicae, Tome 96 (2003) pp. 207-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-5/