We prove that for all integers n ≥ 1 and real numbers x. The upper bound Si(π) is best possible. This result refines inequalities due to Fejér (1910) and Lenz (1951).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-8, author = {Horst Alzer and Stamatis Koumandos}, title = {A sharp bound for a sine polynomial}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {83-91}, zbl = {1028.26011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-8} }
Horst Alzer; Stamatis Koumandos. A sharp bound for a sine polynomial. Colloquium Mathematicae, Tome 96 (2003) pp. 83-91. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-8/