Multiplicative dependence of shifted algebraic numbers
Paulius Drungilas ; Artūras Dubickas
Colloquium Mathematicae, Tome 96 (2003), p. 75-81 / Harvested from The Polish Digital Mathematics Library

We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285137
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-7,
     author = {Paulius Drungilas and Art\=uras Dubickas},
     title = {Multiplicative dependence of shifted algebraic numbers},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {75-81},
     zbl = {1041.11067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-7}
}
Paulius Drungilas; Artūras Dubickas. Multiplicative dependence of shifted algebraic numbers. Colloquium Mathematicae, Tome 96 (2003) pp. 75-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-7/