We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor on the vector r-tangent bundle over M. This problem is reflected in the concept of natural operators . For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over and we construct explicitly a basis of this module.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2,
author = {W\l odzimierz M. Mikulski},
title = {The natural operators $T^{(0,0)} \textasciitilde\ T^{(1,1)}T^{(r)}$
},
journal = {Colloquium Mathematicae},
volume = {96},
year = {2003},
pages = {5-16},
zbl = {1036.58006},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2}
}
Włodzimierz M. Mikulski. The natural operators $T^{(0,0)} ⇝ T^{(1,1)}T^{(r)}$
. Colloquium Mathematicae, Tome 96 (2003) pp. 5-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2/