The natural operators T(0,0)T(1,1)T(r)
Włodzimierz M. Mikulski
Colloquium Mathematicae, Tome 96 (2003), p. 5-16 / Harvested from The Polish Digital Mathematics Library

We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor A(f):TT(r)MTT(r)M on the vector r-tangent bundle T(r)M=(Jr(M,))* over M. This problem is reflected in the concept of natural operators A:T|f(0,0)T(1,1)T(r). For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over (T(r)) and we construct explicitly a basis of this module.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285093
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2,
     author = {W\l odzimierz M. Mikulski},
     title = {The natural operators $T^{(0,0)} \textasciitilde\ T^{(1,1)}T^{(r)}$
            },
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {5-16},
     zbl = {1036.58006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2}
}
Włodzimierz M. Mikulski. The natural operators $T^{(0,0)} ⇝ T^{(1,1)}T^{(r)}$
            . Colloquium Mathematicae, Tome 96 (2003) pp. 5-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2/