We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor on the vector r-tangent bundle over M. This problem is reflected in the concept of natural operators . For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over and we construct explicitly a basis of this module.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2, author = {W\l odzimierz M. Mikulski}, title = {The natural operators $T^{(0,0)} \textasciitilde\ T^{(1,1)}T^{(r)}$ }, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {5-16}, zbl = {1036.58006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2} }
Włodzimierz M. Mikulski. The natural operators $T^{(0,0)} ⇝ T^{(1,1)}T^{(r)}$ . Colloquium Mathematicae, Tome 96 (2003) pp. 5-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-1-2/