Groups with metamodular subgroup lattice
M. De Falco ; F. de Giovanni ; C. Musella ; R. Schmidt
Colloquium Mathematicae, Tome 96 (2003), p. 231-240 / Harvested from The Polish Digital Mathematics Library

A group G is called metamodular if for each subgroup H of G either the subgroup lattice 𝔏(H) is modular or H is a modular element of the lattice 𝔏(G). Metamodular groups appear as the natural lattice analogues of groups in which every non-abelian subgroup is normal; these latter groups have been studied by Romalis and Sesekin, and here their results are extended to metamodular groups.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284889
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-2-7,
     author = {M. De Falco and F. de Giovanni and C. Musella and R. Schmidt},
     title = {Groups with metamodular subgroup lattice},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {231-240},
     zbl = {1028.20023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-2-7}
}
M. De Falco; F. de Giovanni; C. Musella; R. Schmidt. Groups with metamodular subgroup lattice. Colloquium Mathematicae, Tome 96 (2003) pp. 231-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-2-7/