We solve the mod G Cauchy functional equation f(x+y) = f(x) + f(y) (mod G), where G is a countable subgroup of ℝ and f:ℝ → ℝ is Borel measurable. We show that the only solutions are functions linear mod G.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-9, author = {Nikos Frantzikinakis}, title = {Additive functions modulo a countable subgroup of $\mathbb{R}$}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {117-122}, zbl = {1016.39018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-9} }
Nikos Frantzikinakis. Additive functions modulo a countable subgroup of ℝ. Colloquium Mathematicae, Tome 96 (2003) pp. 117-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-9/