Additive functions modulo a countable subgroup of ℝ
Nikos Frantzikinakis
Colloquium Mathematicae, Tome 96 (2003), p. 117-122 / Harvested from The Polish Digital Mathematics Library

We solve the mod G Cauchy functional equation f(x+y) = f(x) + f(y) (mod G), where G is a countable subgroup of ℝ and f:ℝ → ℝ is Borel measurable. We show that the only solutions are functions linear mod G.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285346
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-9,
     author = {Nikos Frantzikinakis},
     title = {Additive functions modulo a countable subgroup of $\mathbb{R}$},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {117-122},
     zbl = {1016.39018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-9}
}
Nikos Frantzikinakis. Additive functions modulo a countable subgroup of ℝ. Colloquium Mathematicae, Tome 96 (2003) pp. 117-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-9/