A bifurcation theory for some nonlinear elliptic equations
Biagio Ricceri
Colloquium Mathematicae, Tome 96 (2003), p. 139-151 / Harvested from The Polish Digital Mathematics Library

We deal with the problem ⎧ -Δu = f(x,u) + λg(x,u), in Ω, ⎨ (Pλ) ⎩ uΩ=0 where Ω ⊂ ℝⁿ is a bounded domain, λ ∈ ℝ, and f,g: Ω×ℝ → ℝ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists λ* > 0 such that, for each λ ∈ (0,λ*), problem (Pλ) admits a non-zero, non-negative strong solution uλp2W2,p(Ω) such that limλ0||uλ||W2,p(Ω)=0 for all p ≥ 2. Moreover, the function λIλ(uλ) is negative and decreasing in ]0,λ*[, where Iλ is the energy functional related to (Pλ).

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285274
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-12,
     author = {Biagio Ricceri},
     title = {A bifurcation theory for some nonlinear elliptic equations},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {139-151},
     zbl = {1082.35026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-12}
}
Biagio Ricceri. A bifurcation theory for some nonlinear elliptic equations. Colloquium Mathematicae, Tome 96 (2003) pp. 139-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-12/