Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen-Macaulay whenever R is Noetherian.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-11, author = {R. Naghipour and H. Zakeri and N. Zamani}, title = {Cohen-Macaulayness of multiplication rings and modules}, journal = {Colloquium Mathematicae}, volume = {96}, year = {2003}, pages = {133-138}, zbl = {1046.13003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-11} }
R. Naghipour; H. Zakeri; N. Zamani. Cohen-Macaulayness of multiplication rings and modules. Colloquium Mathematicae, Tome 96 (2003) pp. 133-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-11/