Embedding proper homotopy types
M. Cárdenas ; T. Fernández ; F. F. Lasheras ; A. Quintero
Colloquium Mathematicae, Tome 96 (2003), p. 1-20 / Harvested from The Polish Digital Mathematics Library

We show that the proper homotopy type of any properly c-connected locally finite n-dimensional CW-complex is represented by a closed polyhedron in 2n-c (Theorem I). The case n - c ≥ 3 is a special case of a general proper homotopy embedding theorem (Theorem II). For n - c ≤ 2 we need some basic properties of “proper” algebraic topology which are summarized in Appendices A and B. The results of this paper are the proper analogues of classical results by Stallings [17] and Wall [20] for finite CW-complexes; see also Dranišnikov and Repovš [7].

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284788
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-1,
     author = {M. C\'ardenas and T. Fern\'andez and F. F. Lasheras and A. Quintero},
     title = {Embedding proper homotopy types},
     journal = {Colloquium Mathematicae},
     volume = {96},
     year = {2003},
     pages = {1-20},
     zbl = {1038.55008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-1}
}
M. Cárdenas; T. Fernández; F. F. Lasheras; A. Quintero. Embedding proper homotopy types. Colloquium Mathematicae, Tome 96 (2003) pp. 1-20. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-1/