Hardy's theorem for the helgason Fourier transform on noncompact rank one symmetric spaces
S. Thangavelu
Colloquium Mathematicae, Tome 91 (2002), p. 263-280 / Harvested from The Polish Digital Mathematics Library

Let G be a semisimple Lie group with Iwasawa decomposition G = KAN. Let X = G/K be the associated symmetric space and assume that X is of rank one. Let M be the centraliser of A in K and consider an orthonormal basis Yδ,j:δK̂,1jdδ of L²(K/M) consisting of K-finite functions of type δ on K/M. For a function f on X let f̃(λ,b), λ ∈ ℂ, be the Helgason Fourier transform. Let ht be the heat kernel associated to the Laplace-Beltrami operator and let Qδ(iλ+ϱ) be the Kostant polynomials. We establish the following version of Hardy’s theorem for the Helgason Fourier transform: Let f be a function on G/K which satisfies |f(kar)|Cht(r). Further assume that for every δ and j the functions Fδ,j(λ)=Qδ(iλ+ϱ)-1K/Mf̃(λ,b)Yδ,j(b)db satisfy the estimates |Fδ,j(λ)|Cδ,je-tλ² for λ ∈ ℝ. Then f is a constant multiple of the heat kernel ht.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284525
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-2-8,
     author = {S. Thangavelu},
     title = {Hardy's theorem for the helgason Fourier transform on noncompact rank one symmetric spaces},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {263-280},
     zbl = {1025.22007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-2-8}
}
S. Thangavelu. Hardy's theorem for the helgason Fourier transform on noncompact rank one symmetric spaces. Colloquium Mathematicae, Tome 91 (2002) pp. 263-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-2-8/