Pluriharmonic functions on symmetric tube domains with BMO boundary values
Ewa Damek ; Jacek Dziubański ; Andrzej Hulanicki ; Jose L. Torrea
Colloquium Mathematicae, Tome 91 (2002), p. 67-86 / Harvested from The Polish Digital Mathematics Library

Let 𝓓 be a symmetric Siegel domain of tube type and S be a solvable Lie group acting simply transitively on 𝓓. Assume that L is a real S-invariant second order operator that satisfies Hörmander's condition and annihilates holomorphic functions. Let H be the Laplace-Beltrami operator for the product of upper half planes imbedded in 𝓓. We prove that if F is an L-Poisson integral of a BMO function and HF = 0 then F is pluriharmonic. Some other related results are also considered.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:285015
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-6,
     author = {Ewa Damek and Jacek Dziuba\'nski and Andrzej Hulanicki and Jose L. Torrea},
     title = {Pluriharmonic functions on symmetric tube domains with BMO boundary values},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {67-86},
     zbl = {1029.32008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-6}
}
Ewa Damek; Jacek Dziubański; Andrzej Hulanicki; Jose L. Torrea. Pluriharmonic functions on symmetric tube domains with BMO boundary values. Colloquium Mathematicae, Tome 91 (2002) pp. 67-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-6/