An algorithm is given to decompose an automorphism of a finite vector space over ℤ₂ into a product of transvections. The procedure uses partitions of the indexing set of a redundant base. With respect to tents, i.e. finite ℤ₂-representations generated by a redundant base, this is a decomposition into base changes.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-4,
author = {Clorinda De Vivo and Claudia Metelli},
title = {A transvection decomposition in GL(n,2)},
journal = {Colloquium Mathematicae},
volume = {91},
year = {2002},
pages = {51-60},
zbl = {1014.15002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-4}
}
Clorinda De Vivo; Claudia Metelli. A transvection decomposition in GL(n,2). Colloquium Mathematicae, Tome 91 (2002) pp. 51-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-4/