On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity
J. Chabrowski ; Shusen Yan
Colloquium Mathematicae, Tome 91 (2002), p. 141-150 / Harvested from The Polish Digital Mathematics Library

We consider the Neumann problem for the equation -Δu-λu=Q(x)|u|2*-2u, u ∈ H¹(Ω), where Q is a positive and continuous coefficient on Ω̅ and λ is a parameter between two consecutive eigenvalues λk-1 and λk. Applying a min-max principle based on topological linking we prove the existence of a solution.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284757
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10,
     author = {J. Chabrowski and Shusen Yan},
     title = {On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {141-150},
     zbl = {1090.35074},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10}
}
J. Chabrowski; Shusen Yan. On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity. Colloquium Mathematicae, Tome 91 (2002) pp. 141-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10/