We consider the Neumann problem for the equation , u ∈ H¹(Ω), where Q is a positive and continuous coefficient on Ω̅ and λ is a parameter between two consecutive eigenvalues and . Applying a min-max principle based on topological linking we prove the existence of a solution.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10, author = {J. Chabrowski and Shusen Yan}, title = {On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity}, journal = {Colloquium Mathematicae}, volume = {91}, year = {2002}, pages = {141-150}, zbl = {1090.35074}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10} }
J. Chabrowski; Shusen Yan. On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity. Colloquium Mathematicae, Tome 91 (2002) pp. 141-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10/