We consider the Neumann problem for the equation , u ∈ H¹(Ω), where Q is a positive and continuous coefficient on Ω̅ and λ is a parameter between two consecutive eigenvalues and . Applying a min-max principle based on topological linking we prove the existence of a solution.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10,
author = {J. Chabrowski and Shusen Yan},
title = {On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity},
journal = {Colloquium Mathematicae},
volume = {91},
year = {2002},
pages = {141-150},
zbl = {1090.35074},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10}
}
J. Chabrowski; Shusen Yan. On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity. Colloquium Mathematicae, Tome 91 (2002) pp. 141-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm94-1-10/