Convolution operators with anisotropically homogeneous measures on 2n with n-dimensional support
E. Ferreyra ; T. Godoy ; M. Urciuolo
Colloquium Mathematicae, Tome 91 (2002), p. 285-293 / Harvested from The Polish Digital Mathematics Library

Let αi,βi>0, 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let tx=(tαx,...,tαx), tx=(tβx,...,tβx) and ||x||=i=1n|xi|1/αi. Let φ₁,...,φₙ be real functions in C(-0) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2n given by μ(E)=χE(x,φ(x))||x||γ-αdx, where α=i=1nαi and dx denotes the Lebesgue measure on ℝⁿ. Let Tμf=μf and let ||Tμ||p,q be the operator norm of Tμ from Lp(2n) into Lq(2n), where the Lp spaces are taken with respect to the Lebesgue measure. The type set Eμ is defined by Eμ=(1/p,1/q):||Tμ||p,q<,1p,q. In the case αiβk for 1 ≤ i,k ≤ n we characterize the type set under certain additional hypotheses on φ.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:285302
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-8,
     author = {E. Ferreyra and T. Godoy and M. Urciuolo},
     title = {Convolution operators with anisotropically homogeneous measures on $$\mathbb{R}$^{2n}$ with n-dimensional support},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {285-293},
     zbl = {1006.42018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-8}
}
E. Ferreyra; T. Godoy; M. Urciuolo. Convolution operators with anisotropically homogeneous measures on $ℝ^{2n}$ with n-dimensional support. Colloquium Mathematicae, Tome 91 (2002) pp. 285-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-8/