Asymptotic behavior of a sequence defined by iteration with applications
Stevo Stević
Colloquium Mathematicae, Tome 91 (2002), p. 267-276 / Harvested from The Polish Digital Mathematics Library

We consider the asymptotic behavior of some classes of sequences defined by a recurrent formula. The main result is the following: Let f: (0,∞)² → (0,∞) be a continuous function such that (a) 0 < f(x,y) < px + (1-p)y for some p ∈ (0,1) and for all x,y ∈ (0,α), where α > 0; (b) f(x,y)=px+(1-p)y-s=ms(x,y) uniformly in a neighborhood of the origin, where m > 1, s(x,y)=i=0sai,sxs-iyi; (c) (1,1)=i=0mai,m>0. Let x₀,x₁ ∈ (0,α) and xn+1=f(x,xn-1), n ∈ ℕ. Then the sequence (xₙ) satisfies the following asymptotic formula: x((2-p)/((m-1)i=0mai,m))1/(m-1)1/nm-1.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:286685
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-6,
     author = {Stevo Stevi\'c},
     title = {Asymptotic behavior of a sequence defined by iteration with applications},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {267-276},
     zbl = {1029.39006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-6}
}
Stevo Stević. Asymptotic behavior of a sequence defined by iteration with applications. Colloquium Mathematicae, Tome 91 (2002) pp. 267-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-6/