Standardly stratified split and lower triangular algebras
Eduardo do N. Marcos ; Hector A. Merklen ; Corina Sáenz
Colloquium Mathematicae, Tome 91 (2002), p. 303-311 / Harvested from The Polish Digital Mathematics Library

In the first part, we study algebras A such that A = R ⨿ I, where R is a subalgebra and I a two-sided nilpotent ideal. Under certain conditions on I, we show that A is standardly stratified if and only if R is standardly stratified. Next, for A=U0MV, we show that A is standardly stratified if and only if the algebra R = U × V is standardly stratified and VM is a good V-module.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284597
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-10,
     author = {Eduardo do N. Marcos and Hector A. Merklen and Corina S\'aenz},
     title = {Standardly stratified split and lower triangular algebras},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {303-311},
     zbl = {1058.16016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-10}
}
Eduardo do N. Marcos; Hector A. Merklen; Corina Sáenz. Standardly stratified split and lower triangular algebras. Colloquium Mathematicae, Tome 91 (2002) pp. 303-311. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-10/