It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer such that the polynomial represents at least r distinct primes.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10, author = {W. Narkiewicz and T. Pezda}, title = {On prime values of reducible quadratic polynomials}, journal = {Colloquium Mathematicae}, volume = {91}, year = {2002}, pages = {151-154}, zbl = {1052.11066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10} }
W. Narkiewicz; T. Pezda. On prime values of reducible quadratic polynomials. Colloquium Mathematicae, Tome 91 (2002) pp. 151-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10/