It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer such that the polynomial represents at least r distinct primes.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10,
author = {W. Narkiewicz and T. Pezda},
title = {On prime values of reducible quadratic polynomials},
journal = {Colloquium Mathematicae},
volume = {91},
year = {2002},
pages = {151-154},
zbl = {1052.11066},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10}
}
W. Narkiewicz; T. Pezda. On prime values of reducible quadratic polynomials. Colloquium Mathematicae, Tome 91 (2002) pp. 151-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10/