On prime values of reducible quadratic polynomials
W. Narkiewicz ; T. Pezda
Colloquium Mathematicae, Tome 91 (2002), p. 151-154 / Harvested from The Polish Digital Mathematics Library

It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer Nr such that the polynomial f(X)/Nr represents at least r distinct primes.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284699
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10,
     author = {W. Narkiewicz and T. Pezda},
     title = {On prime values of reducible quadratic polynomials},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {151-154},
     zbl = {1052.11066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10}
}
W. Narkiewicz; T. Pezda. On prime values of reducible quadratic polynomials. Colloquium Mathematicae, Tome 91 (2002) pp. 151-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-1-10/