Let A be a complex n × n matrix. Let A' be its commutant in Mₙ(ℂ), and C(A) be its centralizer in GL(n,ℂ). Consider the standard C(A)-action on ℂⁿ. We describe the C(A)-orbits via invariant subspaces of A'. For example, we count the number of C(A)-orbits as well as that of invariant subspaces of A'.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-2-8,
author = {Ching-I Hsin},
title = {On the orbit of the centralizer of a matrix},
journal = {Colloquium Mathematicae},
volume = {91},
year = {2002},
pages = {243-255},
zbl = {1037.15012},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-2-8}
}
Ching-I Hsin. On the orbit of the centralizer of a matrix. Colloquium Mathematicae, Tome 91 (2002) pp. 243-255. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-2-8/