Let A be a complex n × n matrix. Let A' be its commutant in Mₙ(ℂ), and C(A) be its centralizer in GL(n,ℂ). Consider the standard C(A)-action on ℂⁿ. We describe the C(A)-orbits via invariant subspaces of A'. For example, we count the number of C(A)-orbits as well as that of invariant subspaces of A'.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-2-8, author = {Ching-I Hsin}, title = {On the orbit of the centralizer of a matrix}, journal = {Colloquium Mathematicae}, volume = {91}, year = {2002}, pages = {243-255}, zbl = {1037.15012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-2-8} }
Ching-I Hsin. On the orbit of the centralizer of a matrix. Colloquium Mathematicae, Tome 91 (2002) pp. 243-255. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-2-8/