We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4, author = {Oleksandr Khomenko and Volodymyr Mazorchuk}, title = {Rigidity of generalized Verma modules}, journal = {Colloquium Mathematicae}, volume = {91}, year = {2002}, pages = {45-57}, zbl = {1026.17007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4} }
Oleksandr Khomenko; Volodymyr Mazorchuk. Rigidity of generalized Verma modules. Colloquium Mathematicae, Tome 91 (2002) pp. 45-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4/