We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4,
author = {Oleksandr Khomenko and Volodymyr Mazorchuk},
title = {Rigidity of generalized Verma modules},
journal = {Colloquium Mathematicae},
volume = {91},
year = {2002},
pages = {45-57},
zbl = {1026.17007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4}
}
Oleksandr Khomenko; Volodymyr Mazorchuk. Rigidity of generalized Verma modules. Colloquium Mathematicae, Tome 91 (2002) pp. 45-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4/