Rigidity of generalized Verma modules
Oleksandr Khomenko ; Volodymyr Mazorchuk
Colloquium Mathematicae, Tome 91 (2002), p. 45-57 / Harvested from The Polish Digital Mathematics Library

We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284193
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4,
     author = {Oleksandr Khomenko and Volodymyr Mazorchuk},
     title = {Rigidity of generalized Verma modules},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {45-57},
     zbl = {1026.17007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4}
}
Oleksandr Khomenko; Volodymyr Mazorchuk. Rigidity of generalized Verma modules. Colloquium Mathematicae, Tome 91 (2002) pp. 45-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-4/