Unconditional biorthogonal wavelet bases in Lp(d)
Waldemar Pompe
Colloquium Mathematicae, Tome 91 (2002), p. 19-34 / Harvested from The Polish Digital Mathematics Library

We prove that a biorthogonal wavelet basis yields an unconditional basis in all spaces Lp(d) with 1 < p < ∞, provided the biorthogonal wavelet set functions satisfy weak decay conditions. The biorthogonal wavelet set is associated with an arbitrary dilation matrix in any dimension.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:283911
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-2,
     author = {Waldemar Pompe},
     title = {Unconditional biorthogonal wavelet bases in $L^{p}($\mathbb{R}$^{d})$
            },
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {19-34},
     zbl = {0999.42023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-2}
}
Waldemar Pompe. Unconditional biorthogonal wavelet bases in $L^{p}(ℝ^{d})$
            . Colloquium Mathematicae, Tome 91 (2002) pp. 19-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-2/