We prove that a biorthogonal wavelet basis yields an unconditional basis in all spaces with 1 < p < ∞, provided the biorthogonal wavelet set functions satisfy weak decay conditions. The biorthogonal wavelet set is associated with an arbitrary dilation matrix in any dimension.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-2, author = {Waldemar Pompe}, title = {Unconditional biorthogonal wavelet bases in $L^{p}($\mathbb{R}$^{d})$ }, journal = {Colloquium Mathematicae}, volume = {91}, year = {2002}, pages = {19-34}, zbl = {0999.42023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-2} }
Waldemar Pompe. Unconditional biorthogonal wavelet bases in $L^{p}(ℝ^{d})$ . Colloquium Mathematicae, Tome 91 (2002) pp. 19-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-2/