Sharp spectral asymptotics and Weyl formula for elliptic operators with Non-smooth Coefficients-Part 2
Lech Zielinski
Colloquium Mathematicae, Tome 91 (2002), p. 1-18 / Harvested from The Polish Digital Mathematics Library

We describe the asymptotic distribution of eigenvalues of self-adjoint elliptic differential operators, assuming that the first-order derivatives of the coefficients are Lipschitz continuous. We consider the asymptotic formula of Hörmander's type for the spectral function of pseudodifferential operators obtained via a regularization procedure of non-smooth coefficients.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284325
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-1,
     author = {Lech Zielinski},
     title = {Sharp spectral asymptotics and Weyl formula for elliptic operators with Non-smooth Coefficients-Part 2},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {1-18},
     zbl = {1002.35092},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-1}
}
Lech Zielinski. Sharp spectral asymptotics and Weyl formula for elliptic operators with Non-smooth Coefficients-Part 2. Colloquium Mathematicae, Tome 91 (2002) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-1-1/