Rank α operators on the space C(T,X)
Dumitru Popa
Colloquium Mathematicae, Tome 91 (2002), p. 255-262 / Harvested from The Polish Digital Mathematics Library

For 0 ≤ α < 1, an operator U ∈ L(X,Y) is called a rank α operator if xταx implies Uxₙ → Ux in norm. We give some results on rank α operators, including an interpolation result and a characterization of rank α operators U: C(T,X) → Y in terms of their representing measures.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284033
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-2-5,
     author = {Dumitru Popa},
     title = {Rank $\alpha$ operators on the space C(T,X)},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {255-262},
     zbl = {1034.47010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-2-5}
}
Dumitru Popa. Rank α operators on the space C(T,X). Colloquium Mathematicae, Tome 91 (2002) pp. 255-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-2-5/