Estimates with global range for oscillatory integrals with concave phase
Bjorn Gabriel Walther
Colloquium Mathematicae, Tome 91 (2002), p. 157-165 / Harvested from The Polish Digital Mathematics Library

We consider the maximal function ||(Saf)[x]||L[-1,1] where (Saf)(t)(ξ)=eit|ξ|af̂(ξ) and 0 < a < 1. We prove the global estimate ||Saf||L²(,L[-1,1])C||f||Hs(), s > a/4, with C independent of f. This is known to be almost sharp with respect to the Sobolev regularity s.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:283522
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-2-1,
     author = {Bjorn Gabriel Walther},
     title = {Estimates with global range for oscillatory integrals with concave phase},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {157-165},
     zbl = {1005.42008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-2-1}
}
Bjorn Gabriel Walther. Estimates with global range for oscillatory integrals with concave phase. Colloquium Mathematicae, Tome 91 (2002) pp. 157-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-2-1/