Let A be a finite-dimensional algebra which is quasi-hereditary with respect to the poset (Λ, ≤), with standard modules Δ(λ) for λ ∈ Λ. Let ℱ(Δ) be the category of A-modules which have filtrations where the quotients are standard modules. We determine some inductive results on the relative Auslander-Reiten quiver of ℱ(Δ).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-9, author = {Karin Erdmann and Jos\'e Antonio de la Pe\~na and Corina S\'aenz}, title = {Relative Auslander-Reiten sequences for quasi-hereditary algebras}, journal = {Colloquium Mathematicae}, volume = {91}, year = {2002}, pages = {123-142}, zbl = {1040.16013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-9} }
Karin Erdmann; José Antonio de la Peña; Corina Sáenz. Relative Auslander-Reiten sequences for quasi-hereditary algebras. Colloquium Mathematicae, Tome 91 (2002) pp. 123-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-9/