Hyperspaces of universal curves and 2-cells are true Fσδ-sets
Paweł Krupski
Colloquium Mathematicae, Tome 91 (2002), p. 91-98 / Harvested from The Polish Digital Mathematics Library

It is shown that the following hyperspaces, endowed with the Hausdorff metric, are true absolute Fσδ-sets: (1) ℳ ²₁(X) of Sierpiński universal curves in a locally compact metric space X, provided ℳ ²₁(X) ≠ ∅ ; (2) ℳ ³₁(X) of Menger universal curves in a locally compact metric space X, provided ℳ ³₁(X) ≠ ∅ ; (3) 2-cells in the plane.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:283942
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-7,
     author = {Pawe\l\ Krupski},
     title = {Hyperspaces of universal curves and 2-cells are true $F\_{$\sigma$$\delta$}$-sets},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {91-98},
     zbl = {0980.54004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-7}
}
Paweł Krupski. Hyperspaces of universal curves and 2-cells are true $F_{σδ}$-sets. Colloquium Mathematicae, Tome 91 (2002) pp. 91-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-7/