Spectral subspaces and non-commutative Hilbert transforms
Narcisse Randrianantoanina
Colloquium Mathematicae, Tome 91 (2002), p. 9-27 / Harvested from The Polish Digital Mathematics Library

Let G be a locally compact abelian group and ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. We study Hilbert transforms associated with G-flows on ℳ and closed semigroups Σ of Ĝ satisfying the condition Σ ∪ (-Σ) = Ĝ. We prove that Hilbert transforms on such closed semigroups satisfy a weak-type estimate and can be extended as linear maps from L¹(ℳ,τ) into L1,(,τ). As an application, we obtain a Matsaev-type result for p = 1: if x is a quasi-nilpotent compact operator on a Hilbert space and Im(x) belongs to the trace class then the singular values μ(x)n=1 of x are O(1/n).

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:283729
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-2,
     author = {Narcisse Randrianantoanina},
     title = {Spectral subspaces and non-commutative Hilbert transforms},
     journal = {Colloquium Mathematicae},
     volume = {91},
     year = {2002},
     pages = {9-27},
     zbl = {1004.46041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-2}
}
Narcisse Randrianantoanina. Spectral subspaces and non-commutative Hilbert transforms. Colloquium Mathematicae, Tome 91 (2002) pp. 9-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-1-2/